February 2017

A Rare Cause Of Respiratory Failure In the Elderly: Myxedema Coma

Pınar Tosun Tasar
Ege University Faculty of Medicine, Department of Internal Medicine/Department of Geriatry, pinar.tosun@gmail.com

Sevnaz Sahin
Ege University Faculty of Medicine, Department of Internal Medicine/Department of Geriatry, drsevnaz@hotmail.com

Kubra Urhan
Ege University Faculty of Medicine, Department of Internal Medicine, Izmir, Turkey, drkubraurhan15@gmail.com

Anil Comert
Ege University Faculty of Medicine, Department of Chest Diseases, anilcomert@ege.edu.tr

Ilgin Yildirim Simsir
Ege University Faculty of Medicine, Department of Internal Medicine/Department of Endocrinology, ilginylidirim@hotmail.com

See next page for additional authors

Follow this and additional works at: http://ejournal.tnmed.org/home

Part of the Medicine and Health Sciences Commons

Recommended Citation

Tosun Tasar, Pınar; Sahin, Sevnaz; Urhan, Kubra; Comert, Anil; Yildirim Simsir, Ilgin; Tasbakan, Mehmet Sezai; Gorgun, Alev; Akcicek, Fehmi; and Cetinkalp, Sevki (2017) "A Rare Cause Of Respiratory Failure In the Elderly: Myxedema Coma," _Tennessee Medicine E-Journal_ Vol. 2 : Iss. 3 , Article 1.
Available at: http://ejournal.tnmed.org/home/vol2/iss3/1

This Article is brought to you for free and open access by Tennessee Medicine e-Journal. It has been accepted for inclusion in Tennessee Medicine E-Journal by an authorized editor of Tennessee Medicine e-Journal.
A Rare Cause Of Respiratory Failure In the Elderly: Myxedema Coma

Cover Page Footnote
A Rare Cause Of Respiratory Failure In the Elderly: Myxedema Coma Pınar Tosun Tasar, Sevnaz Sahin, Kubra Urhan, Anıl Comert, Ilgün Yıldırım Simsir, Mehmet Sezai Tasbakan, Alev Gorgun, Fehmi Akcicek, Sevki Cetinkalp

Authors
Pınar Tosun Tasar, Sevnaz Sahin, Kubra Urhan, Anıl Comert, Ilgün Yıldırım Simsir, Mehmet Sezai Tasbakan, Alev Gorgun, Fehmi Akcicek, and Sevki Cetinkalp

This article is available in Tennessee Medicine E-Journal: http://ejournal.tnmed.org/home/vol2/iss3/1
A Rare Cause Of Respiratory Failure In the Elderly: Myxedema Coma
Pınar Tosun Tasar¹, Sevnaz Sahin¹, Kubra Urhan², Anıl Comert³, İlgin Yıldırım Simsir⁴
Mehmet Sezai Tasbakan³, Alev Gorgun³, Fehmi Akcicek¹, Sevki Cetinkalp⁴

1. Ege University Faculty of Medicine, Department of Internal Medicine/Department of Geriatric, Izmir, Turkey
2. Ege University Faculty of Medicine, Department of Internal Medicine, Izmir, Turkey
3. Ege University Faculty of Medicine, Department of Chest Diseases, Izmir, Turkey
4. Ege University Faculty of Medicine, Department of Internal Medicine/Department of Endocrinology, Izmir, Turkey

ABSTRACT
Some of the findings of hypothyroidism are very similar to those of normal aging. Myxedema coma, the most severe presentation of hypothyroidism, has a mortality rate of 50-60% in the elderly. Although respiratory failure is rare in myxedema coma, it is an emergency due to the high mortality, especially in the elderly. This case report presents a geriatric patient who developed type 2 respiratory failure following myxedema coma associated with Hashimoto’s thyroiditis and emphasizes the importance of early recognition and treatment of myxedema coma.

Keywords: hypothyroidism, elderly, respiratory failure

INTRODUCTION
Hypothyroidism is a systemic disease that affects the central and peripheral nervous systems and the musculoskeletal system. Neuromuscular effect include findings of carpal tunnel syndrome, sensory and sensorimotor polyneuropathy and myopathy (1). Myopathic involvement usually presents as pronounced proximal muscle weakness, myalgia, cramps and elevated creatinine kinase (2, 3). Myxedema coma is a life-threatening form of decompensated hypothyroidism; its mortality rate is between 25-60%, and it is considered an emergency (4-6). Respiratory failure is rare in myxedema coma; however, due to its especially high mortality in the elderly, it is an emergency (7). In this case report, we present a geriatric patient who developed type 2 respiratory failure following myxedema coma associated with Hashimoto’s thyroiditis; we aimed to emphasize the importance of early recognition and treatment in myxedema coma.

CASE REPORT
A 90-year-old male patient was admitted to our clinic with complaints of swelling in the legs, feet and around the eyes, dry skin, coarsening of the voice, cold intolerance, and constipation. The patient had been fully independent in his basic and instrumental daily activities until three months earlier when his complaints had first begun as weakness, fatigue, and widespread muscle pain. In the previous week, repeated falls had been added to the patients’ complaints. He had a history of atrial fibrillation and hypertension and had been taking 400 mg dronedarone for the previous four years. His vital signs were stable on physical examination. His skin was dry and pale, his voice was hoarse, and his mental and motor
responses were slow. He had nonpitting edema of the feet and periorbital area, rales in the bases of both lungs, and skin abrasions secondary to falls. On neurological examination, the proximal muscle strength in his lower extremities was 4/5. There were no known neuromuscular diseases in his or his family’s history. His laboratory results were as follows (with normal reference ranges when applicable): creatinine kinase (CK) = 973 IU/L (41-171); myoglobin = 486.3 ng/mL (28-72); lactate dehydrogenase (LDH) = 508 U/L (135-225); aspartate transaminase (AST) = 39 U/L (<35); creatinine = 1.6 mg/dL (0.7-1.3); hemoglobin = 9.8 g/dL (12.6-17.4); leukocytes = 7,790/µL; glucose = 90 mg/dL (60-110); C-reactive protein (CRP) = 1.56 mg/dL (0-0.5); thyroid-stimulating hormone (TSH) = 122 µU/mL (0.35-5.5); free T3 = 0.76 µg/mL (2.3-4.2); and free T4 = 0.2 ng/mL (0.74-1.52). Antithyroid peroxidase [(antiTPO) = 158 IU/mL (0-35)] and antithyroglobulin [(antiTG) = 1,845 IU/mL (0-40)] antibodies were positive. The patient’s alanine transaminase, total bilirubin, direct bilirubin, albumin, sedimentation, alkaline phosphatase, and total protein values were normal. At 8:00 am his basal cortisol was 19.52 µg/dL (6.7-22.6) and adrenocorticotropic hormone (ACTH) was 21.8 pmol/L (10-46). The patient exhibited sinus rhythm on electrocardiogram, and minimal pericardial effusion was detected on echocardiogram. Treatment was started with 25 µg oral levothyroxine once daily and oral hydrocortisone twice daily at 10 a.m. and 5 p.m. However, the patient developed mental confusion while in our clinic; arterial blood gas analysis results were pH = 7.39 (7.35-7.45); pCO2 = 67.5 mmHg (35-45); pO2 = 97.8 mmHg (83-108); HCO3 = 36.8 mmol/L (22-26); and oxygen saturation = 97.6% (95-98). The patient did not exhibit rhonchi on physical examination; type 2 respiratory failure was the initial diagnosis; the patient was transferred to the respiratory intensive care unit for non-invasive mechanical ventilator support. While in intensive care, 500 µg/day intramuscular levothyroxine was started and hydrocortisone was switched to 20 mg intravenous prednisolone. Respiratory myopathy secondary to hypothyroidism was believed to be the cause of the patient’s respiratory failure. Monitoring of the patient’s blood gas parameters is shown in Table 1.

| Table 1. Progression of the patient’s blood gas values during levothyroxine treatment |
|---------------------------------|---|---|---|---|---|
| | pH | CO2 (mmHg) | PO2 (mmHg) | HCO3 (mmol/L) | O2 saturation (%) |
| Oral treatment | | | | | |
| Day 1 | 7.39 | 67.5 | 97.8 | 36.8 | 97.6 |
| Day 4 | 7.34 | 65.5 | 87.7 | 35.5 | 97.5 |
| Intramuscular treatment | | | | | |
| Day 5 | 7.38 | 65.3 | 53 | 37.8 | 89 |
| Day 7 | 7.44 | 46.4 | 65.9 | 31.3 | 92 |
| Day 10 | 7.49 | 39.1 | 103 | 29.3 | 93 |

While in the intensive care unit, the patient developed Acinetobacter pneumonia; he was unresponsive to treatment and died.

DISCUSSION
The most common causes of hypothyroidism in the elderly are Hashimoto’s disease or autoimmune thyroiditis due to atrophic thyroiditis. Other causes are Graves’ disease treated with 131I or iatrogenic causes such as thyroidectomy (8). Myxedema coma, the most severe
presentation of hypothyroidism, has a 50-60% mortality rate in the elderly (4, 9). Triggering factors include infection, trauma, surgical procedures and medication (10). The main findings of myxedema coma are deterioration of mental status, hypothermia and cardiopulmonary decompensation (11). Some of the findings of hypothyroidism are very similar to those of normal aging, such as cold intolerance, dry skin, a tendency toward constipation and muscle weakness, which can make the diagnostic approach complex (12). Type 2 respiratory failure should be kept in mind when evaluating the thyroid function tests of a patient who appears hypothermic and myxedematous. Hypothyroidism causes respiratory failure through slowing of the central respiratory center, weakening of the respiratory muscles, alveolar hypoventilation and low diffusion capacity, narrowing of the upper respiratory tracts, sleep apnea and pericardial/pleural effusion; hypoxia and hypercapnia occur as a result. With thyroid hormone replacement therapy, respiratory failure gradually resolves (5, 13, 14). The early recognition of hypothyroidism and myxedema coma in elderly patients is critical for its prognosis (15). Respiratory failure generally occurs in the elderly due to congestive heart failure or respiratory diseases (16). In an elderly patient, acute respiratory failure resulting from severe hypothyroidism may be evaluated as a symptom of heart or lung disease and therefore misdiagnosed. Delayed or wrong diagnosis of profound hypothyroidism Findings of hypercapnia, hypoxia, changes in mental status, obstructive sleep apnea syndrome (OSAS) and pericardial/pleural effusion due to are similar to findings in chronic obstructive pulmonary disease (COPD) exacerbation, cardiogenic pulmonary edema, pneumonia, and obesity. In hypothyroidism, respiratory failure is caused by insufficient central ventilation center response to hypercapnia and hypoxia, hypoventilation associated with neuromuscular dysfunction, and OSAS (7, 17). Furthermore, hypothyroidism can cause symptoms ranging from exercise intolerance to diaphragm dysfunction severe enough to mimic diaphragm paralysis, and this dysfunction returns to normal following thyroid hormone replacement therapy (14). Treatment of myxedema coma usually begins with four doses of 100-500 µg intravenous levothyroxine, followed by 50-100 µg/day given intravenously or orally. Respiratory support with non-invasive ventilation may be required in the treatment of elderly patients with profound hypothyroidism (9, 18). Thyroid hormone replacement therapy may increase cortisol clearance, thus aggravating cortisol deficiency; therefore, intravenous administration of 50 mg hydrocortisone at 6-hour intervals is recommended (19). In elderly patients who develop hypoventilatory respiratory failure that cannot be explained by a cardiac, pulmonary or systemic pathology, as in our case, hypothyroidism should be considered in the differential diagnosis, even if the patient has no previous history of thyroid dysfunction (16).

CONCLUSION

Our case demonstrates that hypothyroidism should be considered in the differential diagnosis of respiratory failure in elderly patients when it cannot be explained by pulmonary, cardiac and central nervous system pathologies.
REFERENCES